
CHAPTER 3

Brownian Motion and Its Applications

1. Definition of Brownian Motion

In the next Chapter we will provide a reasonably systematic in-
troduction to stochastic processes; we start however by considering a
particular stochastic process that is of particular importance both in
theory and in the applications, and then consider some of its uses.

Definition. A stochastic process (in the strict sense) is a function
v(ω, t) of two arguments where (Ω,B, P ) is a probability space, ω ∈ Ω,
and t ∈ R, such that for each ω v(ω, t) is a function of t and for each t
v(ω, t) is a random variable.

If t is a space variable the stochastic process is usually called a
random field.

Definition. “Brownian Motion” (in mathematical terminology)
is a stochastic process w(ω, t), ω ∈ Ω, 0 < t < 1, that satisfies the
following four axioms:

(1) w(ω, 0) = 0 for all ω.
(2) For each ω, w(ω, t) is a continuous function of t.
(3) For each t, w(ω, t) is a Gaussian variable with mean zero and

variance t.
(4) w(ω, t) has independent increments, i.e., if t1 < t2 ≤ t3 < t4

then the random variables w(ω, t2) − w(ω, t1) and w(ω, t4) −
w(ω, t3) are independent.

Note that what is called in mathematics Brownian Motion (BM)
is called in physics the Wiener process. And what is called in physics
BM is a different process which is called in mathematics the Ornstein-
Uhlenbeck process, which we shall discuss a little bit later.

First of all one must show that a process that satisfies all of these
conditions exists. This is not a trivial issue; we shall see shortly that
if the second condition above is replaced by the requirement that w
be differentiable, then there is no way to satisfy the conditions. The
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original proof of Wiener consisted of showing that the Fourier series

π

2
√

2

∞∑
k=1

ak

k
sin(πkt/2),

where the ak are independent Gaussian variables with mean zero and
variance one converges, and its sum satisfies the conditions above for
0 ≤ t ≤ 1. Each coefficient is a random function defined on some
probability space (Ω,B, P ), and the resulting BM is also a function on
the very same Ω. For longer times one can construct the process by
stringing the processes constructed by this series end to end. We refer
the reader to the literature.

Next we derive some consequences of the definition of BM.

(1) w(ω, t2)− w(ω, t1), where t2 > t1, is a Gaussian variable with
mean zero and variance t2− t1. Indeed, the Gaussian variable
w(ω, t2), which has mean zero and variance t2 by definition,
may be written as a sum of two Gaussian variables

w(ω, t2) = [w(ω, t2)− w(ω, t1)] + [w(ω, t1)− w(ω, 0)].

By axiom 4, those two variables are independent and hence the
variance of their sum (which is t2) is the sum of their variances.
The variance of [w(ω, t1) − w(ω, 0)] is t1, and therefore the
variance of [w(ω, t2)− w(ω, t1)] is t2 − t1. One can also check
that any linear combination of Gaussian variables is Gaussian.

(2) The correlation function of BM is E[w(t1)w(t2)] = min{t1, t2}.
Indeed, assuming t1 < t2 we get

E[w(t1)w(t2)] = E[w(t1)(w(t1) + (w(t2)− w(t1))]

= E[w(t1)w(t1)] + E[w(t1)(w(t2)− w(t1))] = t1.

In the last equation, the variables w(t1) and w(t2)−w(t1) are
independent and each has mean zero.

(3) Consider the variable

w(ω, t + ∆t)− w(ω, t)

∆t
.

It is Gaussian with mean zero and variance (∆t)−1, which
tends to infinity as ∆t tends to zero. Therefore one can guess
that the derivative of w(ω, t) for any fixed ω exists nowhere
with probability one.

Non-differentiable functions may have derivatives in the sense of
distributions. The derivative in the sense of distributions v(ω, s) of a
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BM w(ω, t) is called “white noise” and is defined by the property:∫ t2

t1

v(ω, s)ds = w(ω, t2)− w(ω, t1).

The origin of the name will be clarified in the next chapter.
Two-dimensional BM is (v1(ω, t), v2(ω, t)) where v1, v2 are indepen-

dent BM’s, and similarly for n-dimensional BM.

2. A Relation Between Brownian Motion and the Heat
Equation

We first solve the heat equation

vt =
1

2
vxx, v(x, 0) = φ(x) (3.1)

on −∞ < x < ∞, t > 0, by Fourier transforms. We start with
the following observations. Let g = g(x, t) and ĝ(k, t) be its Fourier
transform in x

g(x, t) =
1√
2π

∫ ∞

−∞
eikxĝ(k, t)dk.

Then
∂g

∂x
=

1√
2π

∫ ∞

−∞
ikeikxĝ(k, t)dk

and taking the transform of both sides yields

∂̂g

∂x
= ikĝ(k).

Similarly
∂g

∂t
=

1√
2π

∫ ∞

−∞
eikx ∂ĝ

∂t
(k)dk,

and
∂̂g

∂t
=

∂ĝ

∂t
.

Now return to the heat equation. Taking the Fourier transform
with respect to x gives

v̂t(k, t) = −1

2
k2v̂(k, t), v̂(k, 0) = φ̂(k).

Which has as solution

v̂(k, t) = Ce−k2t/2.

Applying the inverse transform to v̂(k, t) and taking into account that
the inverse transform of e−k2t/2 is t−1/2e−x2/2t, the inverse transform of
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ˆφ(k) is φ(x), and the inverse transform of a product is a convolution,
we get

v(x, t) =
1√
2πt

∫ ∞

−∞
e−(x−x′)2/2t φ(x′)dx′. (3.2)

The function

G(x) =
e−x2/2t

√
2πt

is the Green function of the heat equation and we have shown that the
solution of the heat equation is the convolution of the initial data with
the Green function.

Let η be a Gaussian variable with mean x and variance t. Us-
ing (2.4) shows that

v(x, t) = E[φ(η)].

Remember that w(t), where w is BM, is a Gaussian variable with mean
zero and variance t. Start a BM at the point (x, t). Let w(ω, t) be
a BM going backwards from (x, t). It will reach the x-axis after a
time interval t at the point η = x + w(ω, t) where the initial value is
φ(η). The expected value of the function φ(η) is, as we have just seen,
v(x, t). Thus we can evaluate the solution v(x, t) of the heat equation
by starting BM’s from (x, t) and averaging the initial data at the points
where these BM’s hit the x-axis.

3. Solution of the Heat Equation by Random Walks

We now rederive the result above in a roundabout way which will be
useful to our analysis of a more general situation. We will construct a
grid to approximate the heat equation (3.1), solve the resulting discrete
equations by a random walk, and take a limit that will reproduce the
result of the previous section. To construct the grid, draw horizontal
and vertical lines in the (x, t) plane. The distance between the hori-
zontal lines is k (not the Fourier variable!) and between the vertical
lines is h. The points at which these lines intersect will carry values of
an approximation V of the solution v(x, t) of the heat equation. That
is, each point (i, n) = (ih, nk) on the grid carries a value of the grid
function

V n
i = V (ih, nk).

Construct a difference approximation of the derivatives in (3.1)

vt =
V n+1

i − V n
i

k
+ O(k) (3.3)

vxx =
V n

i+1 + V n
i−1 − 2V n

i

h2
+ O(h2). (3.4)



44 3. BROWNIAN MOTION AND ITS APPLICATIONS

Substituting (3.3) and (3.4) into (3.1) we obtain an equation for the
V n

i

V n+1
i − V n

i

k
=

1

2

V n
i+1 + V n

i−1 − 2V n
i

h2
. (3.5)

Starting from the initial data V 0
i = φ(ih) we can find a solution of (3.5)

at time t = nk for any n by the recurrence formula

V n+1
i = V n

i +λ(V n
i+1 +V n

i−1−2V n
i ) = (1−2λ)V n

i +λV n
i+1 +λV n

i−1, (3.6)

where

λ =
1

2

k

h2
.

Define the local “truncation error”

τn
i =

vn+1
i − vn

i

k
− 1

2

vn
i+1 + vn

i−1 − 2vn
i

h2
− (vt − vxx),

where v is a smooth function and vn
i = v(ih, nk). From (3.3) and (3.4)

one finds that that
τn
i = O(k) + O(h2).

In numerical analysis the fact that τn
i tends to zero as h → 0, k → 0

is called “consistency.” Thus, the scheme (3.5) is consistent and its
truncation error is of order O(k) + O(h2).

Now we show that for λ ≤ 1/2 the approximate solution V con-
verges to the exact solution v as h and k tend to zero. It is easy to
check that the error en

i = vn
i − V n

i satisfies the equation

en+1
i = (1− 2λ)en

i + λen
i+1 + λen

i−1 + kτn
i .

Taking the absolute value of both sides we get

|en+1
i | ≤ (1− 2λ)|en

i | + λ|en
i+1| + λ|en

i−1| + k|τn
i |

where we have assumed that 1− 2λ ≥ 0 (or λ ≤ 1/2). Define

En = max
i

|en
i |, (3.7)

and let
τn = max

i
|τn

i |, τ = max
n

|τn|. (3.8)

Then
En+1 ≤ En + kτn ≤ En + kτ

thus

En+1 ≤ En + kτ ≤ En−1 + 2kτ ≤ . . . ≤ E0 + (n + 1)kτ.

If we start from the exact solution then E0 = 0 and hence

En ≤ nkτ = tτ.
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Recall that the local truncation error tends to zero as h, k → 0 and
consider the solution of the heat equation on a finite t interval 0 ≤ t ≤ T
for some finite T ; then En tends to zero as h and k tend to zero
provided λ = k/2h2 is less than or equal to 1/2. That means that the
approximate solution coverges to the exact solution for λ ≤ 1/2.

Choose λ = 1/2. Then (3.6) becomes

V n+1
i =

1

2
(V n

i+1 + V n
i−1). (3.9)

Using (3.9) and iterating backwards in time we can write wn
i in terms

w0
i = φ(ih)

V n
i =

1

2
V n−1

i+1 +
1

2
V n−1

i−1

=
1

4
V n−2

i−2 +
2

4
V n−2

i +
1

4
V n−2

i+2

= . . .

=
n∑

j=0

Cj,nφ((−n + 2j + i)h).

It is easy to see that the numbers Cj,n are the binomial coefficients
divided by 2n

Cj,n =
1

2n

(
n

j

)
. (3.10)

Thus

V n
i =

n∑
j=0

1

2n

(
n

j

)
φ((−n + 2j + i)h). (3.11)

We can interpret the numbers Cj,n as follows: Imagine that a drunk-
ard makes a step h to the left with probability 1/2 or a step h to the
right with probability 1/2 starting from the point (i, n) (see Figure 1)
For the moment ignore the fact that the walk is backwards in time.
Assume that her successive steps are independent. The probability
that she will reach the point (i− j, 0) after n steps is exactly Cj,n. We
can represent this drunken walk as a sum of n random variables

ηk =

{
h, probability 1

2

−h, probability 1
2

, (3.12)

with k = 1, 2, . . . n. This representation gives us another expression
for Cj,n

Cj,n = P

(
n∑

k=1

ηk = i− j

)
. (3.13)
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(!8+i)h (!6+i)h (!4+i)h (!2+i)h ih (2+i)h (4 +i)h (6+i)h (8+i)h
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(Here n=7) 

Figure 1. Backwards walk for the heat equation.

According to the Central Limit Theorem, the sum
∑n

k=1 ηk tends to a
Gaussian variable with mean zero and variance nh2 as n→∞. Recall
that λ = k/2h2 = 1/2, consequently h2 = k and hence nh2 = nk = t.
So

∑n
k=1 ηk tends to a Gaussian variable with mean zero and variance

t as k →∞. Hence,

P

(
n∑

k=1

ηk = i− j

)
→ e−(x−x′)2/2t

√
2πt

.

Therefore,

wn
i =

n∑
j=0

Cj,nφ((−n + 2j + i)h)→
∫ ∞

−∞

e−(x−x′)2/2t

√
2πt

φ(x′)dx′ (3.14)

as n→∞. We have in fact used the Central Limit Theorem to derive
the solution formula for the heat equation.

4. The Wiener Measure

Having described the properties of Brownian motion (BM), our
present goal is to construct a probability measure on the space of con-
tinuous functions in such a way that the set of Brownian motions (the
samples of BM, the functions w(ω, t) for various values of ω) have prob-
ability 1. In other words, we are trying to define a measure on a space
of functions in such a way that the only functions that count are the
BM’s. To this end, consider the space of continuous functions u(t) such
that u(0) = 0. This collection is now our sample space Ω. Ω is the
space of experimental outcomes and our experiment consist of creating
an instance of a continuous function with u(0) = 0.
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Next we need to define a σ-algebra. Pick an instant in time, say t1,
and associate with this instant a window of values [a1, b1]. Consider the
subset of all the continuous functions that pass through this window
and denote it as C1. This subset is called a cylinder set. For every
instant and every window we can define a corresponding cylinder set,
i.e., Ci is the subset of all continuous functions that pass through the
window [ai, bi] at the instant ti. Next, consider two cylinder sets C1

and C2. Then C1 ∩ C2 is the set of functions that pass through both
windows. Similarly, C1 ∪ C2 is the set of functions that pass through
either of C1 or C2. This construction can be carried on to show that
the cylinder sets indeed form a σ-algebra on the space of continuous
functions in [0, 1] that have the value zero at the origin.

The next step in our construction is to define a measure, i.e., a
rule by which to attach probabilities to the cylinder sets. We want to
define the measure in such a way that is appropriate for BM’s. Take
the cylinder set C1. If the functions that belong to this cylinder set are
Brownian motions, the probability of the cylinder set is

P (C1) =

∫ a1

b1

e−s2
1/2t1

√
2πt1

ds1.

Assign this P to this set, and similarly for other cylinder sets con-
structed in the same way at different values of t.

Next, consider the intersection C1 ∩C2 of two cylinder sets C1 and
C2 with t2 > t1. By the property of Brownian motion that nonover-
lapping increments are independent random variables with Gaussian
distributions, we conclude that the probability we should assign to
C1 ∩ C2 is

P (C1 ∩ C2) =

∫ a1

b1

e−s2
1/2t1

√
2πt1

ds1

∫ a2

b2

e−(s2−s1)2/2(t2−t1)√
2π(t2 − t1)

ds2.

Similarly, we can define a probability for the intersection of a count-
able number of cylinder sets. To prove that the measure defined in this
way is a probability measure we need to show that it satisfies the axioms
of probability. For the countable additivity property we can proceed
by invoking the duality principle that the complement of the union of
some sets is equal to the intersection of their complements, and then
use the formula for the probability of the intersection of cylinder sets.
The identity P (Ω) = 1 can be seen from the evaluation of the Gaussian
integrals in the interval (−∞, +∞). The measure we defined is due to
Wiener and carries his name.

Suppose that F is a number attached to a continuous function. For
example, if u(s) is a continuous function with u(0) = 0 and 0 ≤ s ≤ 1
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then we could define F as F =
∫ 1

0 u2(s)ds. Any mapping that attaches
a number to a function is, for historical reasons, called a functional.
Also for historical reasons, a functional acting on a function u(·) is writ-
ten as F [u(·)]. F is a function on Ω, the space of continuous functions
that start from the origin.

If one has a measure one has an integral. Denote the integral with
respect to the Wiener measure by

∫
dW . In particular, if XC is the

indicator function of the set C (XC = 1 if ω is in C, XC = 0 other-
wise), then

∫ XCdW = P (C). If we attach to each BM w a number
F [w(·)], (the number is attached to the whole BM), then the integral∫

F [w(·)]dW is by definition the expected value of F as w runs over
all the possible BM’s.

Example. Suppose F [u(·)] = w2(1); i.e., we take a BM w, look at
the value of w when t = 1, and square that number. This is a number
attached to w. w(1) is by definition a Gaussian random variable with
mean 0 and variance 1. Then∫

FdW =

∫ +∞

−∞
u2 e−u2/2

√
2π

du = 1.

Example. Fubini’s theorem can be extended to integrals more ab-
stract than the elementary finite-dimensional integral and in particular
we can show that it is legitimate, under appropriate conditions, to in-
terchange the order of integration with respect to the Wiener measure
and ordinary integration. For instance, if F [w(·)] =

∫ 1

0 w2(s)ds (a per-
fectly reasonable way to attach a number to the function w(t)), then∫

dW

∫ 1

0

w2(s)ds =

∫ 1

0

ds

∫
dWw2(s) =

∫ 1

0

sds =
1

2

because w(s) is a Gaussian variable with variance s and mean 1.

5. Heat Equation with Potential

Now consider the initial value problem

vt =
1

2
vxx + U(x)vx, v(x, 0) = φ(x). (3.15)

(Note that with the addition of the imaginary i in front of the time
derivative, this would be a Schrödinger equation and U would be a
potential.) Generalizing what has been done before, approximate this
equation by

V n+1
i − V n

i

k
=

1

2

V n
i−1 + V n

i+1 − 2V n
i

h2
+

1

2

(
Ui−1V

n
i−1 + Ui+1V

n
i+1

)
(3.16)
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where Ui = U(ih) and V n
i is, as before, a function defined on the

nodes (ih, nk) of a grid. Note the clever split of the term Uv into two
halves; we now show that the addition of these terms does not destroy
the convergence of the approximation to the solution of the differential
equation. First check consistency: As before,

vn+1
i − vn

i

k
= vt + O(k),

vn
i+1 + vn

i−1 − 2vn
i

h2
= vxx + O(h2).

For the potential term we find

1

2

(
Ui+1v

n
i+1 + Ui−1v

n
i−1

)
=

1

2

(
2Uiv

n
i + h2(Uv)xx + h2O(h2)

)
= Viv

n
i + O(h2).

And so

vn+1
i − vn

i

k
− 1

2

vn
i+1 + vn

i−1 − 2vn
i

h2
− 1

2

(
Ui+1v

n
i+1 + Ui−1v

n
i−1

)
− (vt − 1

2
vxx − U(x)v) = O(k) + O(h2).

Thus the truncation error is small.
Now we show that the approximate solution converges to the exact

solution as k and h tend to zero. Let λ = k/2h2 as before. The exact
solution of (3.15) satisfies

vn+1
i = (1− 2λ)vn

i + λvn
i+1 + λvn

i−1 +
k

2

(
Vi+1v

n
i+1 + Vi−1v

n
i−1

)
+ τn

i

while the approximate solution satisfies

V n+1
i = (1− 2λ)V n

i + λV n
i+1 + λV n

i−1 +
k

2

(
Vi+1w

n
i+1 + Vi−1V

n
i−1

)
.

Thus the error en
i = vn

i − V n
i satisfies

en+1
i = (1− 2λ)en

i + λen
i+1 + λen

i−1 +
k

2
(Ui+1e

n
i+1 + Ui−1e

n
i−1) + kτn

i .

Taking the absolute value of both sides and choosing λ ≤ 1/2 we get

|en+1
i | ≤ (1−2λ)|en

i |+λ|en
i+1|+λ|en

i−1|+
k

2
(|Ui+1||en

i+1|+|Ui−1||en
i−1|)+k|τn

i |.
Assume that the potential is bounded

|U(x)| ≤M

and recall the definitions of En (3.7) and τn (3.8). It follows that

En+1 ≤ En + MkEn + kτn ≤ En(1 + Mk) + kτ

and hence
En+1 ≤ ekMEn + kτ.
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Then

En+1 ≤ ekMEn + kτ

≤ ekM(ekMEn−1 + kτ) + kτ

= e2kMEn−1 + kτ(1 + ekM)

≤ . . .

≤ e(n+1)kME0 + kτ
(
1 + ekM + e2kM + . . . + enkM

)
= e(n+1)kME0 + kτ

e(n+1)kM − 1

ekM − 1
.

Since we start to compute the approximate solution from the given
initial condition v(x, 0) = φ(x), we may assume that E0 = 0. Therefore
at time t = nk En is bounded by

En ≤ kτ
etM − 1

ekM − 1
≤ etMkτ.

And we see that En tends to zero as k and h tend to zero with λ ≤ 1/2.
Thus the approximation is convergent.

Now set λ = 1/2. Then for the approximate solution we have

V n+1
i =

1

2
(V n

i−1 + V n
i+1) +

k

2
(Ui+1V

n
i+1 + Ui−1V

n
i−1)

=
1

2
(1 + kUi+1)V

n
i+1 +

1

2
(1 + kUi−1)V

n
i−1.

As before, the approximate solution V may be represented in the form

V n
i =

∑
j

Cn
ijV

0
j =

∑
j

Cn
ijφj.

But here, unlike in the case V = 0, each movement to the right or
to the left brings in not just a factor 1/2 but also 1/2 times a factor
(1 + kU(x)) (see Figure 2).

Thus for the heat equation with potential Cn
ij is equal to 1/2 mul-

tiplied by the factor (1 + kU(hij)) for each step of each path {i =
i0, i1, i2, . . . , in = j} from (i, n) to (j, 0)

Cn
ij =

1

2n
(1 + kU(hi1))(1 + kU(hi2)) . . . (1 + kU(hin))
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!8h !6h !4h !2h 0 2h 4h 6h 8h 
0
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5k
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(1+kV(h) )/2
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(1+kV(!h))/2 

(1+kV(!2h))/2 

(1+kV(!h))/2 

(1+kV(0))/2 

(1+kV(!h))/2 

Figure 2. Backwards walk for the heat equation with potential.

Since (1 + kUi) = ekUi + O(k2) and each product has n = O(k−1)
factors, we may rewrite the product as∏

path

(1 + kUi) =
∏
path

(
ekUi + O(k)

)
=

∏
path

ekUi + O(k) = exp

(∑
path

kVi

)
+ O(k).

where
∑

path denotes a sum over all the nodes encountered in a single
path from i0 to j; adding up all the paths that contribute to the sum
at j we find:

V n
i =

∑
all paths

1

2n
e

P
path kVi φj + O(k).

As k and h tend to zero, these paths (“walks”) get to resemble BM’s,
so that

exp

[∑
path

kVi

]
→ exp

[∫ t

0

V (x + w(s))ds

]
,

where w(·) is a Brownian motion path; x + w(s) is then a BM that
starts from x. Taking into account the factor φj we find the solution
of the differential equation in the form

v(x, t) = E
[
e

R t
0 V (x+u(s))dsg(x + u(t))

]
=

∫
dWe

R t
0 V (x+u(s))dsg(x+u(t)).

(3.17)
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This is the Feynman-Kac formula. It reduces to the solution formula
for the heat equation when U = 0. This result is useful in quantum
mechanics and in other fields.

6. Physicists’ Notation for Wiener Measure

Physicists use an interesting notation for the Wiener measure which
can be useful when one uses Wiener integrals in problems of mechan-
ics and quantum mechanics. There are no new ideas here, just new
notation. Before proceeding, we recall a number of results already
established.

In the construction of cylinder sets for the Wiener measure, pick
an event C =

⋂
Ci where Ci is associated with the interval [ai, bi] and

ti = ih. Additionally, assume that the windows are of small width, i.e.,
bi − ai = dui. The probability attached to such a set is

P =

∫ b1

a1

e−u2
1/2h

√
2πh

du1

∫ b2

a2

e−(u2−u1)2/2h

√
2πh

du2 · · ·
∫ bn

an

e−(un−un−1)2/2h

√
2πh

dun.

(3.18)
For sufficiently narrow windows, each integral in (3.18) can be approx-
imated by ∫ bi

ai

e−(ui−ui−1)2/2h

√
2πh

dui ≈ e−(u∗i−u∗i−1)2/2h

√
2πh

dui,

where u∗i ∈ [ai, bi]. Therefore P can be approximated by

P ≈ 1

Z
exp

(
−

n∑
i=1

(u∗i − u∗i−1)
2h

2h2

)
[du],

where [du] = du1du2 . . . dun and Z is an appropriate normalization
constant. Thus, formally (this means “not rigorously” or “not really”)

dW =
1

Z
e−

1
2

R t
0( du

ds )
2
ds[du], Z =

∏
n→∞

(2πh)n/2.

This expression is formal in the sense that neither the integral in the
exponent, the limiting Z, nor the product of du’s hidden in [du] exist;
we have shown in particular that Brownian motion is not differentiable.
But still this expression turns out to be useful.

Recall that, given the equation vt = 1
2vxx + V (x)v with the initial

data v(x, 0) = φ(x), we have

v(x, t) =

∫
e

R t
0 G(x+u(s))dsφ(x + u(t))dW.
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In terms of the new notation, this last integral can be written as

v(x, t) =
1

Z

∫
e−

R t
0 [ 12(

du
ds )

2−G(x+u(s))]dsφ(x + u(t))[du]. (3.19)

By definition (3.19) is a “sum over paths.” In principle, one can eval-
uate it by taking many Brownian motion paths, evaluating the inte-
grals for each path, and then averaging the results. The formal (i.e.,
meaningless if one looks too closely) expression [du] is often written as
“dpath” (or something similar). Note, and this is an important point,
that the exponent is an integral of what we will see is a Lagrangian.
Similar integrals appear in quantum mechanics (with an additional
imaginary factor i in the exponent).

If one is given an expression for a measure in the form (3.19), one
can interpret it properly by retracing the steps that led to that form:
the integral of the derivative squared denotes the Wiener measure, the
other part of the integral can be discretized, and the terms in the
resulting sums become the probabilities of a “path” belonging to a
cylinder set.

7. More on the Connection Between Brownian Motion and
the Heat Equation

Consider the random variables w(ω, t) as functions of ω (i.e., as
random variables) for several values of t. Define the function W =
W (x, t) by

W (x, t)dx = P (x < w(t) ≤ x + dx), (3.20)

where w(t) is a Brownian motion. W (x, t) is the probability density
function of the Brownian motion u(t) at the fixed moment t. As we
know,

W (x, t) =
e−x2/2t

√
2πt

.

The graphs of W (x, t) for several values of t are shown in Figure 3.
We see that the graphs become lower and wider as t increases.

The increments of Brownian motion are independent. This means that
if we know that at time t w(t) is at x, then where it is at t + ∆t
does not depend on where it was prior to the moment t. The relation
between W (x, t) and W (x, t+∆t) is given by the Chapman-Kolmogorov
equation

W (x, t + ∆t) =

∫ ∞

−∞
W (x + x′, t)Ψ(x, x′, ∆t)dx′, (3.21)
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Figure 3. W (x, t) for Brownian motion.

where

Ψ(x, x′, ∆t) =
e−(x′)2/2∆t

√
2π∆t

(3.22)

is the “transition kernel.” This equation states that the probability of
reaching x at time t + ∆t is the sum of the probabilities of reaching x′

at time t multiplied by the probability of going from x′ to x during the
time interval ∆t.

Expand W (x + x′) in a Taylor series in x′:

W (x+x′) = W (x)+x′Wx(x)+
(x′)2

2
Wxx(x)+

(x′)3

6
Wxxx(x)+O((x′)4)

and substitute it into (3.21)∫ ∞

−∞
W (x + x′, t)

e−(x′)2/2∆t

√
2π∆t

dx′ =
∫ ∞

−∞
W (x, t)

e−(x′)2/2∆t

√
2π∆t

dx′

+

∫ ∞

−∞
x′Wx(x, t)

e−(x′)2/2∆t

√
2π∆t

dx′ +
1

2

∫ ∞

−∞
(x′)2Wxx(x, t)

e−(x′)2/2∆t

√
2π∆t

dx′

+
1

6

∫ ∞

−∞
(x′)3Wxxx(x)

e−(x′)2/2∆t

√
2π∆t

dx′ +
∫ ∞

−∞
O((x′)4)

e−(x′)2/2∆t

√
2π∆t

dx′,

thus∫ ∞

−∞
W (x+x′, t)

e−(x′)2/2∆t

√
2π∆t

dx′ = W (x)+0+
Wxx(x)∆t

2
+0+O(∆t2).

Hence we have

W (x, t + ∆t) = W (x, t) +
∆t

2
Wxx(x, t) + O(∆t2).
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Dividing by ∆t we obtain

W (x, t + ∆t)−W (x, t)

∆t
=

1

2
Wxx(x, t) + O(∆t).

Letting ∆t→ 0 we find:

∂W

∂t
=

1

2

∂2W

∂x2
.

This is a “Fokker-Planck equation”- an equation that describes the time
evolution of a one-time probability density for a stochastic process. We
see that the Fokker-Planck equation for BM is the heat equation. This
observation generalizes the relation between BM and the heat equation
already described above.

A stochastic process is called a Markov process if what happens
after time t is independent of what happened before time t, i.e., if
t′ > t then

E[u(ω, t′)|u(ω, t)] = E[u(ω, t′)|u(ω, s), s ≤ t].

In other words, if we know u(ω, t) then knowing in addition u(ω, s) for
s < t does not help us to predict u(ω, t′) for t′ > t.

As discussed above, if P (x < u(t) ≤ x + dx) = W (x, t)dx, then
W (x, t) satisfies the Chapman-Kolmogorov equation

W (x, t + ∆t) =

∫
W (x + x′, t)Ψ(x′, x, ∆t)dx′

where Ψ is the “transition probability” from a state x + x′ at time t to
the state x at time t + ∆t. For a Markov process the transition prob-
ability does not depend on W (x, s) for s < t. Brownian motion is by
construction a Markov process because it has independent increments.

8. First Discussion of the Langevin Equation

Let u(t, ω) be a stochastic process defined by the following (formal)
equation

du

dt
= −au +

dw

dt
where a is a positive constant and dw/dt is white noise, the derivative
of a Brownian motion w. We know that this derivative does not exist
in the classical sense thus the equation makes sense only formally (or
else in the sense of distributions). A more sensible way to write the
Langevin equation is

du = −audt + dw (3.23)
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where dw is the increment of Brownian motion. The meaning of (3.23)
is defined by integrating from 0 to t

u(t)− u(0) = −a

∫ t

0

udt +

∫ t

0

dw = −a

∫ t

0

udt + w(t).

This is the Langevin equation (also known in some mathematical circles
as the Ornstein-Uhlenback equation). It is an instance of a stochastic
differential equation. The equation contains a term that is a random
function of t, and the solution u = u(ω, t) should also be a random
function of t that satisfies the equation for every ω in the probability
space on which the equation is defined. The solution of this equation
is known to mathematicians as the Ornstein-Uhlenbeck process.

If we omit the noise term in this equation and retain only the
“damping” term −aw, the solution is a constant times e−at, a pure
decay. If on the other hand we keep the noise term but set a = 0 the
solution of the equation is Brownian motion. In physics this equation
is used to model the motion of a heavy particle under bombardment by
lighter particles; the collisions with the lighter particles provide random
instantaneous bursts of added momentum while the mean effect of the
collisions is to slow the heavy particle down. We shall see in Chapter
6 that when this equation is used as a physical model the coefficient
a, as well as the coefficient of the noise term which we have, rather
arbitrarily, set equal to 1, acquire a direct physical meaning. The solu-
tion of this equation, with the coefficients interpreted correctly, is what
physicists call Brownian motion.

Similarly to what we did in the case of Brownian motion, we want
to find the equation satisfied by the probability density function of
u, i.e., the Fokker-Planck equation for this problem. We choose an
approximation for (3.23): integrating from nk to (n + 1)k where k is
the timestep we have

un+1 − un = −akun + wn+1 + wn. (3.24)

We choose k small enough so that ak < 1. The choice to evaluate the
term −aku at time nk is not just an arbitrary choice of approximation
scheme but is dictated by the physics of the problem: we are construct-
ing the solution step-by-step in time; what we have to work with when
we go from time t = nk to time t = (n + 1)k is the value of u we
have previously calculated and the sample of BM in that time interval,
and this is what we must use. The quantity wn+1 − wn in (3.24) is an
increment of Brownian motion, therefore it is a Gaussian variable with
mean zero and variance k. Equation (3.24) says that un+1− un + akun

is a Gaussian variable with mean zero and variance k. If un is known
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then P (x < un+1 ≤ x + dx) is

P (x < un+1 ≤ x + dx) =
exp

(
− (x−un+akun)2

2k

)
√

2πk
dx. (3.25)

Since un is known this is exactly the transition probability from the
point un at time nk to the point x at time (n + 1)k. If we write
un = x + y then the Chapman-Kolmogorov equation is

W (x, (n + 1)k) =

∫ +∞

−∞
W (x + y, nk)Ψ(x + y, x, k)dy.

Replacing Ψ by the expression we have just derived gives

W (x, (n + 1)k) =

∫ +∞

−∞
W (x + y, nk)

exp
(
− (−y+ak(x+y))2

2k

)
√

2πk
dy.

After rearranging the exponent in the above we have

W (x, t + k) =

∫ +∞

−∞
W (x + y, t)

exp
(
− ((1−ak)y−akx)2

2k

)
√

2πk
dy (3.26)

where t = nk. The next step is to expand W (x + y, t) around x. Up
to fourth order we have

W (x+y, t) = W (x, t)+yWx(x, t)+
y2

2
Wxx(x, t)+

y3

6
Wxxx(x, t)+O(y4).

(3.27)
The expansion of W (x + y, t) is substituted in (3.26) and we evaluate
the different integrals that appear. Consider

I1 =

∫ +∞

−∞
W (x, t)

exp
(
− ((1−ak)y−akx)2

2k

)
√

2πk
dy.

To evaluate I1 we make the change of variables z = (1− ak)y and find

I1 = W (x)

∫ +∞

−∞

exp
(
− (z−akx)2

2k

)
√

2πk

dz

1− ak

=
W (x)

1− ak

∫ +∞

−∞

exp
(
− (z−akx)2

2k

)
√

2πk
dz

=
W (x)

1− ak
= W (x)(1 + ak + O(k2))

= W (x)(1 + ak) + O(k2). (3.28)
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The second integral is

I2 =

∫ +∞

−∞
yWx(x, t)

exp
(
− ((1−ak)y−akx)2

2k

)
√

2πk
dy.

With the same change of variables we get:

I2 = Wx(x, t)

∫ +∞

−∞

z

1− ak

exp
(
− (z−akx)2

2k

)
√

2πk

dz

1− ak

=
Wx(x, t)

(1− ak)2
akx

= Wx(x, t)(1 + 2ak + O(k2))akx

= Wx(x, t)akx + O(k2). (3.29)

The third integral is

I3 =

∫ +∞

−∞

y2

2
Wxx(x, t)

exp
(
− ((1−ak)y−akx)2

2k

)
√

2πk
dy. (3.30)

The same change of variables gives

I3 = Wxx(x, t)

∫ +∞

−∞

z2

2(1− ak)2

exp
(
− (z−akx)2

2k

)
√

2πk

dz

1− ak

= Wxx(x, t)
1

2(1− ak)3
(k + (akx)2)

= Wxx(x, t)
k

2
+ O(k2). (3.31)

The fourth integral is

I4 =

∫ +∞

−∞

y3

6
Wxxx(x, t)

exp
(
− ((1−ak)y−akx)2

2k

)
√

2πk
dy (3.32)

which becomes

I4 = Wxxx(x, t)

∫ +∞

−∞

z3

6(1− ak)3

exp
(
− (z−akx)2

2k

)
√

2πk

dz

1− ak

= Wxxx(x, t)
1

6(1− ak)4
(3axk2 + (akx)3)

= Wxxx(x, t)O(k2). (3.33)

As we see the fourth integral contributes only terms of order O(k2)
and higher; the same is true of the next terms in the expansion which
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have been omitted. Collecting (3.26), (3.27), (3.28), (3.29), (3.31),
and (3.33) and we find

W (x, t+k) = W (x, t)+W (x, t)ak +Wx(x, t)akx+
k

2
Wxx(x, t)+O(k2),

and

W (x, t + k)−W (x, t)

k
= W (x, t)a + Wx(x, t)ax +

1

2
Wxx(x, t) + O(k),

and finally, as we make k → 0,

Wt(x, t) = (axW (x, t))x +
1

2
Wxx(x, t).

This is the Fokker-Planck equation corresponding to the solution of the
Langevin equation (3.23).

Given a Markovian stochastic process we can construct its Fokker-
Planck equation and vice-versa. An interesting pair of a stochastic ordi-
nary differential equation and the corresponding Fokker-Planck equa-
tion arises in two-dimensional incompressible fluid mechanics. If we
consider a fluid having velocity u = (u, v) and vorticity ξ = vx − uy,
where (x, y) represents a point in physical space, then the equation for
the evolution of the vorticity is

∂ξ

∂t
+ (u · ∇)ξ =

1

Re
∆ξ (3.34)

where Re is the Reynolds number of the flow. If we assume that ξ≥ 0
and

∫
ξ = 1 then (3.34) is the Fokker Planck equation of the following

system of stochastic ordinary differential equations

dx = udt +

√
2

Re
dW.

Here x is the position of the point where the vorticity is ξ, and W is
a two-dimensional Brownian motion. Each of these particles carries a
fixed amount of vorticity and the corresponding evolution of the density
solves the vorticity partial differential equation. There is one equation
per point in the support of ξ (i.e., for every point (x, y) such that
ξ(x, y) ,= 0). The velocity u depends on the whole vorticity field at
each instant t, so this equation is nonlinear and couples the BM’s that
correspond to different points in physical space, as one should expect
given that the original equation of motion is nonlinear.
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9. Solution of a Nonlinear Differential Equation by
Branching Brownian Motion

So far, with the exception of the short comments at the end of
the previous section, all the equations we have been solving have been
linear. Now we give an example of how a variant of BM can be used to
solve a nonlinear partial differential equation. The equation we work
with is the Kolmogorov-Petrovski-Piskunov (KPP) equation,

vt − vxx = v2 − v,

for which we prescribe initial data v(x, t = 0) = φ(x). This equation
is an important model in combustion theory and in biology. We are
looking, as before, for a representation of the solution v at a point
(x, t).

Start a BM w going backwards in time from (x, t) and let it run
until a time t− t1 drawn at random from the exponential distribution,
P (y < t1 ≤ y+dy) = exp(−y)dy. Start two independent BM’s running
backwards from (w(t1), t1), call them w11, w12, until new exponentially
distributed times t− t11, t− t12. At each stopping time split the branch
of the BM into two independent BM’s. If the time becomes negative
for any branch, stop. The result is a backward tree with roots that
cross the x-axis. Let the intersections of the tree with the x-axis be
x1, x2, . . . , xn, n ≥ 1, and associate with the tree the product of initial
values Ξ = φ(x1)φ(x2) · · ·φ(xn); the claim is that the expected value
of this product is the solution we want:

v(x, t) = E[Ξ] = E[φ(x1) · · ·φ(xn)].

We take this opportunity to introduce a notation which will be
widely used in Chapter 6. Let ∆ be the second derivative operator in
the space variable x: ∆f = fxx for a smooth function f . Just as the
solution of the equation v′ − av = 0, v(0) = v0, a =constant, is eatv0,
we will symbolically write the solution of the heat equation vt −∆v =
0, v(x, 0) = φ, as v(t) = et∆φ (this is the “semigroup” notation). For
v(x, t), which is the function v(t) evaluated at x, we write v(x, t) =
(et∆φ)(x). We know that (et∆φ)(x) = E[φ(x) + w(t)], where as before
w is BM. One can readily understand the identity e(t+s)∆ = et∆es∆ and
check its validity (this is the “semigroup property”).

The probability that the first branching occurs at a time t1 larger
than t is

∫∞
t e−sds = e−t; if this happens the number Ξ attached to

the tree is φ(x) + w(t) whose expected value, conditioned by t1 >
t, is (et∆φ)(x). Supppose to the contrary that t1 occurs in a time
interval (s, s + ds) earlier than t (this happens with probability e−sds
by construction). Then the two branches of the tree that start from
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the point (t1, w(t1)) carry two independent samples of the Ξ for the
subtrees that start from that point; the expected value of their product
is v2(w(t1), t − s). Averaging over all the BM’s that start from (x, t)
and branch at a time between s and s + ds gives (es∆v2(t− s))(x).

Collecting all these facts we find:

v(x, t) = E[Ξ] = e−tet∆φ +

∫ t

0

e−ses∆v2(t− s)ds

= e−tet∆φ +

∫ t

0

es−te(s−t)∆v2(s)ds,

where the last identity is obtained by the change of variables s′ = t− s
and the prime is dropped. Differentiate this expression with respect
to t, noting that ∆e−t = e−t∆ (differentiation with respect to x and
multiplication by a function of t commute), and find that v satisifies
the equation; it is obvious that v(x, 0) = φ.

10. A Brief Introduction to Stochastic ODEs

We have solved above a particular stochastic differential equation—
the Langevin equation; we now make some comments about more gen-
eral stochastic ordinary differential equations (SODE’s) of the form

du = a(t, u(t))dt + b(t, u(t))dw, (3.35)

where w is Brownian motion. The meaning of this equation is defined
by

u(t)− u(0) =

∫ t

0

a(s, u(s))ds +

∫ t

0

b(s, u(s))dw.

The first integral is well-defined while, as we shall now see, the second
is not. Integrals of this form are called stochastic integrals. Let us
figure out in what sense we can understand them.

Let f(t) be a function defined on an interval [a, b]. A partition of
[a, b] is a set of points {ti}n

i=0 such that

a = t0 < t1 < t2 < . . . < tn = b.

Definition. The variation of f(t) on [a, b] is defined by

Var(f(t)) = sup
all partitions

n−1∑
i=0

|f(ti+1)− f(ti)|. (3.36)

If the sup is finite f is said to have bounded variation; Brownian
motion does not have bounded variation. Stieltjes integrals of the form
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g(t)df(t) make sense only when the increment function f has bounded

variation and therefore ∫ t

0

b(s, u(s))dw

is not well-defined as a Stieltjes integral.
The way to make sense of the stochastic integrals is to approximate

b(t, u(s)) by a piecewise constant function, i.e.,

∫ t

0

b(s, u(s))dw ≈
n−1∑
i=0

bidui =
n−1∑
i=0

bi(w(ti+1)− w(ti)),

where {ti}n
i=0 is a partition of [0, t], and then consider the limits of

the sum as one makes the largest interval ti − ti−1 in the partition go
to zero. Now one has to decide how to pick the bi’s. There are two
common choices:

(1) The bi’s are evaluated at the left ends of the intervals, i.e.,

bi = b(ti, u(ti)).

(2) The bi’s are the average of the endpoints

bi =
1

2
[b(ti, u(ti)) + b(ti+1, u(ti+1))] .

Choice 1 defines the Ito stochastic integral while choice 2 defines the
Stratonovich stochastic integral.

Example. Suppose b(t, u(t)) = w(t). (To apply the analysis to the
SODE above we could assume that the SODE has the solution u(t) =
w(t), however, all we are trying to show is that the two definitions of
the integrals give different answers.) Then in the Ito case:

I1 =

∫ t

0

wdw ≈
n−1∑
i=0

w(ti)(w(ti+1)− w(ti)).

This is of course a random variable; the expected value of this random
variable is zero, as one can see from the properties of BM:

E[I1] = 0.
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In the Stratonovich case we find for the stochastic integral:

I2 =

∫ t

0

udu ≈
n−1∑
i=0

1

2
(w(ti+1) + w(ti))(w(ti+1)− w(ti))

=
n−1∑
i=0

1

2
(w2(ti+1)− w2(ti))

=
1

2

[
w2(t1)− w2(t0) + w2(t2)− w2(t1) + . . . + w2(tn)− w2(tn−1)

]
=

1

2

[
w2(tn)− w2(t0)

]
=

1

2
w2(t),

and the expected value of this integral is

E[I2] =
t

2
.

The fact that the expected values of the two integrals are so different
is of course enough to show that the integrals themselves are different.
This is very different from the situation in ordinary calculus, where
the value of an integral is independent of the choice of points in the
Riemann sums. How the stochastic integral is defined makes a big
difference to the meaning of a stochastic differential equation. For the
sake of definiteness we shall assume henceforth, when this makes a
difference, that we are dealing with stochastic differential equations in
the sense of Ito. When b in (3.35) is a constant (as has been the case
so far in these notes) there is no ambiguity.
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